lunes, 31 de julio de 2017

Plantas parásitas que “no son tan malas”

Las plantas parásitas son aquellas que se “enganchan” a otras plantas, les absorben los nutrientes y pueden llegar a acabar por matar a su víctima. De hecho, ya hablamos de este tipo de plantas en el artículo “Plantas parásitas que "roban" genes”.
Concretamente, la Cuscuta es un género de plantas parásitas que se agarran a su víctima para extraer agua y nutrientes.Varias plantas pueden ser parasitadas a la vez por una o varias  cuscutas, formando grandes “redes”. A través de estas conexiones se pueden transferir otras moléculas, como metabolitos, proteínas y mRNA, además de facilitar el contagio de virus.
Pero parece que no todo son problemas, también estas redes de parásitos tienen sus beneficios. Un grupo de científicos alemanes y chinos acaban de publicar en la importante revista PNAS el trabajo donde han descubierto que estas redes “parásito-hospedador” son capaces de avisar al resto de las plantas de un ataque de insectos. Es decir, cuando una planta de esta red es atacada por un insecto, se transmiten una serie de señales moleculares (a más de un metro de distancia) que avisan al resto de plantas para que “movilicen sus defensas” y de esta forma se puedan defender del ataque.


¿Cómo lo han hecho?

En el laboratorio crecieron plantas parásitas (de la especie Cuscuta australis) y plantas de soja (Glycine max). Las crecieron tan cerca que la cuscuta parasitó a la soja. Una vez establecido el sistema "planta-parásito", dejaron que la oruga Spodoptera litura atacara a la soja. Entonces tomaron muestras de hoja de la planta parasitada y la no parasitada, y de planta atacada y no atacada por la oruga. Estas muestras fueron analizadas mediante RNAseq (técnica de la que ya hemos hablado en el blog) y pudieron visualizar los genes que se “activaban” y “desactivaban”.
Gracias a esto pudieron ver cómo reaccionaban las plantas a este ataque, incluyendo todas sus rutas metabólicas.
Además repitieron estas pruebas con otras plantas como Arabidoposis y plantas de tabaco (dos plantas modelo utilizadas frecuentemente en ciencia), para ver si ocurría con más tipos de plantas. Y efectivamente, en menos de 30 minutos toda la red de plantas parasitadas eran avisadas del ataque del insecto, pudiendo disparar sus defensas. De hecho, observaron que las plantas que eran “avisadas” se defendían un 20% mejor que las que estaban fuera de la red y no podían ser avisadas.

Conclusiones.

Este trabajo nos muestra una forma muy curiosa en que un teórico parásito puede llegar a ser un aliado, pero no es el primer caso que ocurre algo así. Se ha observado que mujeres parasitadas con un tipo de helminto (gusano parásito) aumenta su fertilidad o que reduce fenómenos de autoinmunidad y alergias en humanos.
Es decir, que no todo es malo o bueno, sino que, a veces, hay que mirar dos veces antes de sacar conclusiones tajantes sobre si “algo o alguien” es tan malo como parece.

La imagen de la Cuscuta invadiendo varias plantas es por cortesía de Scot Nelson

Compartir:

viernes, 21 de julio de 2017

El problema de los nemátodos parásitos, más cerca de solucionarse en los cultivos

Aunque muchos no lo sepan, las plantas también tienen gusanos parásitos. Concretamente se les llama nemátodos y son microscópicos. De hecho, los nématodos son uno de los problemas más importantes de la agricultura hoy en día. Suponen unas pérdidas multimillonarias para la agricultura a nivel mundial. Estos “gusanitos” se meten en las raíces de las plantas, y empiezan a reproducirse, manipulando el genoma de las plantas para hacerlas que produzcan grandes tumores en su raíces (como se puede ver en la imagen de más abajo) y así poder alimentarse y vivir en estos tumores. Estos grandes tumores son muy perjudiciales para la planta ya que impide a ésta poder extraer del suelo el agua y los compuestos nutritivos, matándola pasado un tiempo.
Investigadores españoles y japoneses acaban de publicar un artículo en la importante revista Frontiers in Plant Science donde cuentan los grandes descubrimientos que han hecho para avanzar en la lucha contra esta amenaza de los cultivos.


¿Cómo lo han hecho?

En primer lugar se preguntaron cómo es posible que estos pequeños gusanos consigan hacer crecer unos tumores tan grandes en tantos tipos de plantas a lo largo de todo el planeta. Concretamente se centraron en uno de los nemátodos más importantes, llamado Meloidogyne incognita y en la planta Arabidopsis thaliana, una “mala hierba” de la que ya hemos hablado a lo largo del blog muchas veces, porque es una de las plantas modelo más utilizadas entre los investigadores de plantas, por su genoma tan sencillo, su tamaño y la facilidad para reproducirse.
Imagen de raíces de planta de tomate atacadas por el nemátodo (Imagen por Scot Nelson (Creative Commons).

Infectaron varias plantas con el nemátodo y analizaron las células de la raíz de la planta infectada durante varias fases con varias pruebas moleculares y por microscopía. Además hicieron una secuenciación de los genes que se expresaban en la planta mediante la técnica de RNA seq (de la cual ya hemos hablado en otros artículos del blog) comparado con el control. Además tiñeron con un tinte especial las raíces de la planta, para poder diferenciar qué células eran modificadas por el parásito durante el crecimiento del tumor.
Con todas estas pruebas pudieron ver que el parásito modifica el desarrollo de las raíces de las plantas a través de los genes de las células madres vegetales de los tejidos vasculares de la planta (es decir, lo equivalente a las células de nuestras venas y arterias en las plantas). Esto lo hace para poder alimentarse de la planta y así poder reproducirse, para poder ir atacando a otras plantas del entorno.

Conclusiones

Esta investigación es muy importante para la lucha contra este tipo de nemátodos en la agricultura, porque ha conseguido descubrir qué genes son los que manipula el nemátodo en la planta. Esto se podrá utilizar en el futuro para que se desarrollen plantas que tengan estos genes modificados y así estos gusanitos tan fastidiosos no puedan parasitar la planta.

La imagen del nemátodo al microscopio electrónico ha sido realizada por William Wergin and Richard Sayre. Colorized by Stephen Ausmus. U.S. Department of Agriculture (Wikipedia Commons).
Compartir:

jueves, 13 de julio de 2017

Descubiertos microbios que ayudan a que podamos seguir comiendo chocolate

Todos los que somos adictos al chocolate sabemos lo que sufriríamos si algún día desaparece de nuestras vidas, o si hubiera alguna plaga que destruyera una gran parte de las plantas de cacao y transformara el chocolate en un artículo de lujo que solo algunos afortunados pudieran comer.
Por eso hay muchos científicos trabajando constantemente en mejorar el árbol del cacao y en sus técnicas agrícolas para evitar que esto pase. Una de las mayores amenazas de todos los cultivos del mundo son los microorganismos patógenos.
Una de las formas de luchar contra estas enfermedades de las plantas, de forma respetuosa con el medio ambiente, acaba de ser demostrada en el árbol del cacao y acaba de ser publicada en la prestigiosa revista “Proceedings of the Royal Society B” (el artículo original lo puede ver en este enlace).


¿Cómo lo hicieron?

Cada vez está más reconocido que los microorganismos que tenemos a nuestro alrededor afectan al resto de los seres vivos del planeta (de otros planetas aún no lo sabemos), desde las plantas hasta los humanos. Esta interacción afecta a los seres vivos tanto para mal (provocando enfermedades) como para bien (protegiéndonos de enfermedades, ayudándonos a ingerir nutrientes, a luchar contra el estrés, etc.).
Entre estos microorganismos están los hongos endofíticos, hongos que habitan dentro de las propias plantas de forma que existe una simbiosis. La planta le da un lugar a los hongos para vivir y algo de alimento, y el hongo le aporta defensas contra otros hongos además de nutrientes.
Con esta base, lo que hicieron un grupo de científicos estadounidenses y panameños fue utilizar estos hongos beneficiosos para proteger a plantas de cacao de enfermedades.
En primer lugar seleccionaron el suelo de hojas muertas de bosques donde las plantas estuvieran saludables (sospechando que ahí habitaban hongos “buenos” que protegían a las plantas de los hongos “malos”).
Este suelo se lo aplicaron a pequeñas plantas de cacao y las expusieron a una enfermedad. ¡Y descubrieron que resisten las enfermedades mucho mejor que las control!
Una vez que vieron que "algo" este “suelo de hojas muertas” protegía al cacao, estudiaron qué es lo que tiene este suelo de especial. Gracias a una serie de análisis bioquímicos y genéticos descubrieron que había un microorganismo protector lo que preotegía a las plantas, concretamente un hongo llamado Colletotrichum tropicale.
Aislando este microorganismo y aplicándolo por sí solo a las plantas de cacao, comprobaron que este microorganismo era el que protegía de algunas enfermedades provocadas por hongos, concretamente de un hongo llamado Phytophthora palmivora.

Conclusiones.

Este es otro ejemplo del potencial que tienen los microorganismos beneficiosos para la agricultura. Es una forma natural y totalmente sostenible medioambientalmente de proteger los cultivos sin necesidad de utilizar los peligrosos agroquímicos. 


La imagen de la Phytophthora es autoría de Supattra Intavimolsri Department of Agriculture, Thailand (Wikipedia Commons)

Compartir:

martes, 4 de julio de 2017

El éxito de las bacterias como alternativa a los fertilizantes sintéticos también depende de las plantas

Introducción

La intensificación sostenible de la agricultura quiere proporcionar seguridad alimentaria a una población mundial creciente y al mismo tiempo reducir los efectos negativos medioambientales de la agricultura. Para conseguirlo, es necesario desarrollar nuevas estrategias que permitan aumentar la eficiencia de los cultivos en la utilización de recursos (nutrientes, agua, suelo…) manteniendo los rendimientos actuales. 

De forma natural encontramos en el suelo gran variedad de microorganismos capaces de interaccionar con las plantas y estimular su crecimiento. Entre ellos, encontramos las bacterias promotoras del crecimiento vegetal o PGPB (del inglés Plant Growth Promoting Bacteria) que pueden vivir en el interior, la superficie y/o alrededores de las raíces de las plantas proporcionándoles una mejor nutrición mineral, regulando su crecimiento y/o disminuyendo los efectos de otros microorganismos perjudiciales. 

Como en los animales (y humanos), las hormonas controlan y regulan el funcionamiento de las plantas. Entre ellas, el etileno participa en diversos procesos. El papel más conocido del etileno es su influencia en la maduración de los frutos, dando lugar a varios cambios, como el paso de color verde a rojo, de sabor de ácido a dulce y/o de textura dura a blanda. Sin embargo, el etileno está involucrado en otros procesos durante el crecimiento de la planta como la respuesta a los cambios ambientales (sequía, inundación, deficiencias en nutrientes en el suelo…) y la interacción con microorganismos (defensa frente a patógenos y establecimiento de relaciones beneficiosas).

La utilización de dichas bacterias supone una buena estrategia para reducir e incluso reemplazar los fertilizantes sintéticos en la agricultura. Por eso, entender cómo las bacterias interaccionan con las plantas y promueven su crecimiento es esencial para utilizarlas de manera adecuada y efectiva a gran escala en los sistemas de agricultura integrada. Para investigar más en el tema, en la Estación Experimental del Zaidín (Granada, España) hemos publicado un artículo en la prestigiosa revista Annals of Botany en el cual estudiamos cómo afectan las hormonas de la planta, en concreto el etileno, en su relación con los microorganismos beneficiosos que le rodean.

¿Cómo lo hicimos?

Se realizo el experimento con plantas de tomate “normales” o sensibles al etileno y plantas completamente iguales pero insensibles a etileno debido a una mutación en una proteína receptora. Se utilizaron dos bacterias aisladas de suelos áridos del sur de España (Bacillus megaterium o Enterobacter sp.) y se inocularon en las raíces de plantas de tomate de diez días de vida. Además, se utilizaron también plantas sin bacterias como control de los experimentos. 

Después de la cosecha se analizó el crecimiento secando y pesando las plantas. Además, se estudió el contenido en nutrientes minerales, varias hormonas y metabolitos de las plantas para observar los efectos que producen las bacterias viviendo en las raíces de las plantas.
En este estudio se vio que Bacillus megaterium solamente era capaz de promover el crecimiento de las plantas de tomate si eran sensibles a etileno después de dos meses de crecimiento, mientras que Enterobacter sp. aumentaba el crecimiento en plantas sensibles e insensibles a etileno. Además, las bacterias modificaban los niveles de metabolitos de la raíz en las plantas juveniles produciendo B.megaterium mayores cambios en los niveles de azúcares y Enterobacter sp.  en los niveles de amino ácidos. 

Conclusiones

En este estudio se ha demostrado que la sensibilidad a etileno es esencial para que la bacteria beneficiosa Bacillus megaterium pueda ejercer sus efectos positivos sobre el crecimiento de las plantas. Sin embargo, la mutación que produce la insensibilidad a etileno no afectaría a la bacteria Enterobacter sp.
El autor de este artículo es Pablo Ibort

Compartir:

Artículos científicos para no científicos

El objetivo fundamental de este blog es acercar la ciencia a la sociedad de forma que todos seamos partícipes de los avances científicos, haciendo así una sociedad más justa, igualitaria y avanzada. A lo largo de este blog podrás informarte de forma amena, con el máximo rigor científico y de primera mano, de los últimos artículos científicos en las mejores revistas internacionales.

Subscríbete gratis! Te enviaré un email cuando publique la siguiente entrada.

Páginas vistas en total

Todo lo publicado puede difundirse por cualquier medio (nombrando este blog como la fuente). Con la tecnología de Blogger.

Wikipedia

Resultados de la búsqueda

Labels